Subwavelength Terahertz Imaging of Graphene Photoconductivity
نویسندگان
چکیده
Using a spatially structured, optical pump pulse with a terahertz (THz) probe pulse, we are able to determine spatial variations of the ultrafast THz photoconductivity with subwavelength resolution (75 μm ≈ λ/5 at 0.8 THz) in a planar graphene sample. We compare our results to Raman spectroscopy and correlate the existence of the spatial inhomogeneities between the two measurements. We find a strong correlation with inhomogeneity in electron density. This demonstrates the importance of eliminating inhomogeneities in doping density during CVD growth and fabrication for photoconductive devices.
منابع مشابه
Planar hyperlens based on a modulated graphene monolayer
The canalization of terahertz surface plasmon polaritons using a modulated graphene monolayer is investigated for subwavelength imaging. An anisotropic surface conductivity formed by a set of parallel nanoribbons with alternating positive and negative imaginary conductivities is used to realize the canalization regime required for hyperlensing. The ribbons are narrow compared to the wavelength ...
متن کاملGraphene-loaded wire medium for tunable broadband subwavelength imaging
In this paper, we demonstrate that a wire medium (WM) slab loaded with graphene sheets enables the enhancement of the near field for subwavelength imaging at terahertz frequencies. The analysis is based on the nonlocal homogenization model for WM with the additional boundary condition at the connection of wires to graphene. The principle of the operation of the proposed lens depends on the enha...
متن کاملSemiconducting-to-metallic photoconductivity crossover and temperature-dependent Drude weight in graphene.
We investigate the transient photoconductivity of graphene at various gate-tuned carrier densities by optical-pump terahertz-probe spectroscopy. We demonstrate that graphene exhibits semiconducting positive photoconductivity near zero carrier density, which crosses over to metallic negative photoconductivity at high carrier density. These observations can be accounted for by the interplay betwe...
متن کاملTunable Terahertz Deep Subwavelength Imaging Based on a Graphene Monolayer
The resolution of conventional terahertz (THz) imaging techniques is limited to about half wavelength, which is not fine enough for applications of biomedical sensing and nondestructive testing. To improve the resolution, a new superlens, constructed by a monolayer graphene sheet combining with a grating voltage gate, are proposed in this paper to achieve deep super-resolution imaging in the TH...
متن کاملExtreme sensitivity of graphene photoconductivity to environmental gases
Graphene is a single layer of covalently bonded carbon atoms, which was discovered only 8 years ago and yet has already attracted intense research and commercial interest. Initial research focused on its remarkable electronic properties, such as the observation of massless Dirac fermions and the half-integer quantum Hall effect. Now graphene is finding application in touch-screen displays, as c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 16 شماره
صفحات -
تاریخ انتشار 2016